Anzeige
Preisvergleich
Inkl. Versand
Sortieren:
Beste Treffer
Beste Treffer
Preis: niedrig bis hoch
Preis: hoch bis niedrig

Mathematics for Machine Learning 110845514X
Mathematics for Machine Learning

40,99€
40,99€
Versand: frei!
Versand: frei!

Cambridge University Press Mathematics for Machine Learning 56971446
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

40,99€
40,99€
Versand: frei!
Versand: frei!

Cambridge University Press Mathematics for Machine Learning A1055578561
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

44,99€
44,99€
Versand: frei!
Versand: frei!

Cambridge University Press Mathematics for Machine Learning
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

44,99€
44,99€
Versand: frei!
Versand: frei!

Cambridge UP Mathematics for Machine Learning, Fachbücher von Marc Peter Deisenroth, Cheng Soon Ong, A. Aldo Faisal 9781108455145
Dieses Buch bietet eine umfassende Abdeckung aller grundlegenden mathematischen Konzepte für maschinelles Lernen. Ich freue mich darauf, es mit Studenten, Kollegen und allen, die ein solides Verständnis der Grundlagen aufbauen möchten, zu teilen. Das Gebiet des maschinellen Lernens hat in den letzten Jahren dramatisch zugenommen, mit einem immer beeindruckenderen Spektrum erfolgreicher Anwendungen. Dieser umfassende Text behandelt die wesentlichen mathematischen Konzepte, die dem modernen maschinellen Lernen zugrunde liegen, mit einem Fokus auf linearer Algebra, Analysis und Wahrscheinlichkeitstheorie. Es wird sowohl als Tutorial für Neueinsteiger in das Feld als auch als Referenztext für Forscher und Ingenieure im Bereich des maschinellen Lernens von Wert sein.

49,60€
49,60€
Versand: frei!
Versand: frei!